
Abstract

Field-programmable gate arrays (FPGAs) have largely been

used in communication and high-performance computing,

and given the recent advances in big data, machine learning

and emerging trends in cloud computing (e.g., serverless

[1]), FPGAs are increasingly being introduced into these

domains (e.g., Microsoft’s datacenters [2] and Amazon Web

Services [3]). To address these domains’ processing needs,

recent research has focused on using FPGAs to accelerate

workloads, ranging from analytics and machine learning to

databases and network function virtualization. In this paper,

we present a high-performance FPGA-as-a-microservice

(FaaM) architecture for the cloud. We discuss some of the

technical challenges and propose several solutions for

efficiently integrating FPGAs into virtualized environments.

Our case study deploying a multi-threaded, multi-user

compression as a microservice using FaaM indicates that

microservices-based FPGA acceleration can sustain high-

performance as compared to a straightforward CPU

implementation with minimal to no communication overhead

despite the hardware abstraction.

Keywords—FPGA, FPGA-as-a-Service, Compression,

Cloud Computing, Container, Virtualization

1. Introduction

With the rapidly increasing demand for cloud computing,

there is a corresponding increased interest in using field-

programmable gate arrays (FPGAs) to accelerate datacenter

workloads. Given an FPGA’s computational flexibility,

FPGA-based accelerators have been generally applied to

applications with intensive, high-performance computing

(HPC) demands, achieving orders of magnitude

performance improvement and power efficiency as

compared to functionally equivalent central processing unit

(CPU)-based implementations [4][5][6].

 Additionally, an FPGA’s reprogramability make FPGA-

based accelerators highly suitable for datacenter-wide

deployments, especially for workloads that have algorithms

that may change over time. However, the economics of

scaling new, non-homogenous datacenter architectures

combining traditional CPUs with FPGAs remains a

significant resource management challenge, which includes

deployment, maintainability, and composability across an

entire datacenter infrastructure. Addressing these challenges

is critical for minimizing operational costs and service

downtime in large-scale, production environments.

 In spite of this management complexity, the emergence of

hyperscale datacenters (i.e., datacenters with high scale-out

capabilities) presents an opportunity for accelerator systems

that tightly integrate CPUs and FPGAs (e.g., Xeon+FPGA

server platform [7]). While these tightly coupled servers

enable acceleration of local applications that run on each

server, to meet performance demands, users must be able to

access and distribute applications across a large, global

FPGA accelerator pool which shares an optimized

communication infrastructure. Finally, for ease of use, this

pool must appear as an individual datacenter resource that is

accessible to multiple, simultaneous cloud users.

2. Related Work

Recent research efforts explore the flexibility of using

FPGAs as hardware accelerators for datacenter services,

which are similar to traditional software-based services but

realize additional performance benefits.

 Byma et al. [8] and Ye et al. [9] proposed integrating

FPGA resources into datacenters and the cloud with

OpenStack, which is open-source cloud software that uses a

hypervisor and virtual machines (VMs). Fahmy et al. [10]

introduced a framework that uses a custom resource

manager to directly manage virtual FPGA accelerators in

the form of partially reconfigurable regions (PRRs).

 Cloud-based FPGAs that are used for specific services,

such as network function acceleration and deep learning

inference, may require low-latency or high-bandwidth

communication for streaming data or processing large

volumes of data. Caulfield et al. [11] used a layer of FPGAs

between the network switches and the servers, providing the

FPGAs with direct intercommunication and enabling

datacenter-wide acceleration. Ouyang et al. [12] used an

FPGA accelerator to enable large-scale deep neural network

(DNN) training, and provide online services in a low-cost,

Using FPGAs as Microservices: Technology, Challenges and Case Study

David Ojika¹ ², Ann Gordon-Ross¹, Herman Lam¹, Bhavesh Patel², Gaurav Kaul³, Jayson Strayer³

¹University of Florida ²DELL EMC ³Intel Corporation

david_ojika, bhavesh_a_patel{@dell.com}, anngordonross, hlam{@ufl.edu},

 jayson.strayer, gaurav.kaul{@intel.com}

low-power environment.

Despite these advances, integrating FPGAs in the cloud

requires the appropriate level of hardware abstraction, as

well as FPGA resource management, which is non-trivial.

Even with the emergence of new cloud providers, besides

Amazon and Microsoft, offering FPGAs to customers, there

is still no standard way to make FPGAs more easily

available to these users.

In this work, we propose a FPGA-as-a-microservice

(FaaM) architecture that presents FPGA accelerators as

unique set of datacenter-style services. This architecture

allows cloud service providers to offer FPGAs to cloud

users in similar ways as CPU and graphics processing unit

(GPU) resources are offered, with the added benefit of

hardware acceleration and hyperscale.

3. FPGA Microservices

Our approach uses microservices (a collection of loosely

coupled accelerator services) to offer FPGA accelerators as

a collection of shared, lightweight services that scales

dynamically with constantly changing datacenter workload

demands. Using an FPGA-as-a-microservice (FaaM)

architecture for the cloud, FPGA accelerator functionality

can be offered as a microservice, enabling application

developers to easily leverage many microservice

characteristics, including auto-deployment, scalability,

dynamic configuration, and disaster recovery [13].

Additionally, since a microservice is stateless, FPGA

resources can be quickly provisioned without relying on

extra virtualization technology [14], further reducing the

time to relocate a microservice in the event of failure.

3.1 Design
In this section, we describe our FaaM design and

implementation, which is based on Docker containers. We

prototype FaaM using x86-based Xeon+FPGA physical

machines running a Linux operating system. We note that

the proposed FaaM architecture is not restricted to only

Docker containers and Xeon+FPGA platforms, but can be

realized for other types of virtualization technologies and

FPGA platforms.

 Fig. 1 depicts the general FaaM architecture consisting of

a Worker Node and a Service Node. To enable dynamic

scaling with increasing datacenter workloads, Worker Nodes

are decoupled from Service Nodes. Service Nodes host FaaM

services, providing a set of hardware-accelerated functions

(e.g., a compression service). FaaM services are deployed in

Service Containers, simplifying manageability by the FaaM

Service Manager. To support load balancing, multiple

instances of a Service Container can be deployed by the

FaaM Service Manager as a group of identical services,

providing fault-tolerant redundancy and scalability. Service

Containers may also serve unique FaaM services depending

on how the FaaM Service Manager and the FPGA in the

Worker Nodes have been configured.

Each Worker Node runs a single instance of a FaaM

Accelerator Manager, which is a separate (privileged)

Docker container instance, providing accelerator

management functions (e.g., reprogramming the FPGA or

providing control and monitoring features). Under the

control of the FaaM Accelerator Manager, a Worker Node

hosts one or more Worker Containers from a container

repository that is accessible by all Worker Nodes. Each

Worker Container abstracts a specific hardware accelerator

function (e.g., a compression service), exposing the function

as a web service, consequently enabling remote access by

Service Containers.

A high-speed Ethernet network connects Service Nodes

with Worker Nodes. Worker Nodes are behind a secured

network, and cloud users have no way of directly interacting

with the FPGAs or Worker Nodes, except through a set web

application programming interfaces (APIs) exposed by

Service Nodes through Service Containers. The APIs are

implemented as Java WebSocket, enabling point-to-point

inter-node communication.

As shown in Fig. 1, a Worker Node is organized into three

distinct layers: the FPGA accelerator, the task scheduler, and

the Java virtual machine (JVM) runtime system.

Fig. 1: FaaM architecture

Fig. 2: (a). Basic overview of the Xeon+FPGA hardware

stack. (b). Prototyped software stack with Intel-provided

components and newly added components. Board Support

Package (BSP) and AAL Driver are part of the Intel AAL

framework.

FPGA Accelerator: Fig. 2 illustrates the FPGA accelerator

layer, where accelerator function units (AFUs) provide the

accelerator functionality. The AFUs act as a pool of FPGA

configurable resources where different accelerator functions

are assigned to each AFU. The accelerator function is

constrained in size by the amount of logic resources on the

AFU, and must expose a Cache Coherent Interface Protocol

(CCI-P) that connects to the CCI-P Interconnect block and to

the rest of the components on the FPGA.

Task Scheduler: To schedule cloud users’ jobs, we focus

on a task scheduler that is local to each Worker Container.

The role of the scheduler is to admit threads from the web

service and schedule these threads on the FPGA. When an

accelerator request arrives, the scheduler examines the low-

level information from the hardware (such as which AFU is

currently unutilized) and makes dispatch decisions that

match the corresponding thread to an available AFU. To

maintain fair sharing of the AFU, we use a first-come-first-

serve (FCFS) scheduling policy and use buffer sizes with

minimal overhead, ranging between 32 KB and 128 KB as

further discussed in Section 4.2. When an accelerator

function is not available, the scheduler defaults to executing

the thread on the CPU to maintain acceptable throughput.

JVM Runtime System: We implemented an FPGA runtime

system written in Java. The runtime system is designed as a

dynamic library shared among multiple threads that can be

associated with user requests. We prototype the runtime

system atop the Accelerator Abstraction Layer (AAL)

software stack provided by Intel. AAL provides low-level

accelerator management functionality to the scheduler,

allowing the scheduler to call into native C/C++ libraries of

AAL. While the FPGA JVM and task scheduler both run as

a single JVM process, the web service runs as a separate

process, allowing for a different type of web service to be

interfaced with the proposed runtime system.

4. Challenges and Solutions

In this section, we present several challenges and solutions

when designing the FaaM architecture. To verify the

proposed approach, we implement compression [15] as a

microservice and evaluate runtime performance as well as

overheads.

4.1 Software and FPGA Interaction

While FPGA accelerators are normally manipulated

through C/C++ code or low-level libraries, some

datacenter-scale applications and frameworks are

commonly written in Java - or other runtime-based

language such as Scala – running within a (JVM) virtual

machine. FPGAs are naturally not supported by JVMs, thus

the first step for FPGA-to-application integration is to

enable support for the FPGA in the JVM, and bridge the

gap between native C/C++ code and the application runtime.

 Java Native Interface (JNI) is typically used to address

this issue, however JNI does not always deliver an efficient

solution. In particular, the cost of moving data between the

JVM heap and native memory can adversely impact

application performance. Using SWIG (a wrapper and

interface generator), we wrote a domain-specific language

(DSL) script that automatically generates Java wrappers

from native C++ classes. This approach saves us a

significant amount time in debugging JNI code directly,

while generating clean interfaces that are optimized for our

specific native libraries (i.e., the AAL runtime libraries).

4.2 FPGA-to-Host Memory Communication

Since data movement between the JVM and native memory

can incur significant overhead, we leverage the non-

blocking I/O (i.e., Java NIO) mechanism that is natively built

Fig. 3: Data transfer mechanism showing data movement

from the JVM and to FPGA memory.

Fig. 4: Buffer read / write performance for different buffer sizes.

into the Java framework. As shown in Fig. 3, a buffer from

Java NIO is essentially a block of memory that is wrapped

in a Java buffer object. This object is then accessible in Java

as a streaming Java class, and is free of JVM garbage

collection since the underlying memory is outside the JVM

heap.

We create NIO buffers of fixed sizes (one per software

thread) and re-use individual buffers as many times as the

thread associated with a respective buffer is dispatched.

Because the allocation of NIO-based buffers can incur

overheads (just as with direct memory allocation in C),

reusing buffers between non-overlap threads helps to

amortize this overhead. As empirically suggested in Fig. 4,

we choose buffer size of 64 KB as the optimal transfer size.

We also observe that a relatively large amount of time is

required by the JVM when establishing large NIO

buffers—up to 1ms for buffers as large as 1GB.

4.3 CPU-FPGA Thread Co-existence

FPGAs are naturally high performances, and can rapidly

offload CPU threads for compute-intensive tasks such as

compression. Therefore, it is necessary to maintain high

resource utilization by sharing the FPGA accelerator across

multiple CPU threads as illustrated in Fig. 5. To achieve

sharing, we implement three versions of an accelerator

function interacting with the CPU:

 Single-threaded C++ (ZLIB-FPGA)

 Single-threaded Java (ZLIB-FPGA/JVM)

 Multithreaded Java (ZLIB-FPGA/JVM-T)

 We also compare performance with default ZLIB

running on a CPU for single-threaded (ZLIB-CPU) and

multithreaded (ZLIB-CPU-T) job. While ZLIB-FPGA is a

straightforward C++ implementation, ZLIB-FPGA/JVM is

a wrapper implementation of the former in Java. ZLIB-

FPGA/JVM-T is coupled with our task scheduler and

together integrated into a multithreaded data processing

system (Spark [16]) to demonstrate real world benefits. It is

important to note that the purpose of evaluating the

performance of ZLIB-FPGA/JVM initially is to ensure that

the developed wrapper code meets the performance of the

straightforward ZLIB-FPGA implementation at very

minimal overheads.

 In the single-threaded scenario (Fig. 6), ZLIB-

FPGA/JVM shows an average speedup of 9.8X over ZLIB-

CPU. This was roughly the same speedup (10X) achieved

when comparing the straightforward ZLIB-FPGA

implementation with ZLIB-CPU, meaning that the ZLIB-

FPGA/JVM has very minimal overhead despite the JVM

abstraction.

Fig. 5: Multithreading with Java Concurrency: Threads (each

fixed with a private buffer size) take turns in offloading

compression tasks to the FPGA.

Fig. 6: Single-threaded benchmark of ZLIB-FPGA/JVM versus

ZLIB-CPU. Both ZLIB-CPU and GZIP-CPU (JDK) are based on

the DEFLATE algorithm, thus their performances are similar.

BZIP-CPU has the highest compression ratio but is CPU-

intensive.

Fig. 7: TeraSort of an 8 GB file in Apache Spark using eight

worker threads. “-T” denotes that the compression algorithm

is multithreaded.

Having created an efficient JVM version of the FPGA

accelerator, we can integrate ZLIB-FPGA/JVM in a

multithreaded environment. We use our task scheduler and

set the buffer sizes for individual threads to 64 KB (from

Fig. 4, 64 KB is the optimal transfer size). The transfer size

is also congruent with the chunk sizes on the FPGA

accelerator. Moreover, we find that this buffer size is most

effective when taking into consideration the Resilient

Distributed Datasets (RDD) block size used by the Spark.

As shown in Fig. 7 and using our multithreaded JVM

implementation, the total application run time is reduced from 7

minutes down to 5 minutes.

4.4 Fault Resilience and Cloud Scaling

An important design factor in a hyperscale cloud is the

ability to recover from unforeseen failures and minimize

downtimes. For FPGAs deployed in the cloud, this can be

particularly challenging due to the setup and initialization

steps required. To address this challenge, we extend ZLIB-

FPGA/JVM-T and leverage Docker’s GPU passthrough

[17] to create a compression-as-a-microservice (CaaM)

framework. The CaaM framework, now exposing ZLIB-

FPGA/JVM-T as a containerized service, achieves the same

performance as with the non-containerized ZLIB-

FPGA/JVM-T implementation.

 To provide fault recovery and improve service

availability, using the FaaM Accelerator Manager we

configure the CaaM framework to automatically restart

upon failure, which takes only a fraction of a second as with

any standard Docker container that is configured with

Autorestart.

5. Lessons Learned and Discussions

We presented an architecture for deploying FPGAs in the

cloud and highlighted several challenges and solutions for

harnessing FPGAs in virtualized environments, such as

Docker containers. Motivated by the dynamic nature of

datacenter workloads, we proposed an FPGA-as-a-

Microservice (FaaM) architecture to allow multiple cloud

users to share FPGA accelerator services. Using this FaaM

architecture, we implemented compression-as-a-

Microservice (CaaM), and demonstrated that FPGA

microservices achieve high performance with very minimal

runtime overheads.

 We summarize the lessons learned as follows:

I. By efficiently designing buffer movement

mechanisms between Java’s heap memory and

native memory used by the FPGA accelerator, it

is possible to reduce unnecessary data transfer

overheads and achieve acceptable performance

that is close to straightforward FPGA

implementation in C/C++. Our Java

implementation has less than 1% reduction in

application performance for the CaaM.

II. Contrary to previous work where a single, shared

buffered is created and shared among multiple

threads—resulting in thread contentions—our

implementations create multiple private non-

blocking NIO buffers, resulting in a more

efficient computation-to-memory access pattern.

By scaling up or down buffer sizes (to a certain

threshold) along with the number of threads in

relation to the total input work size, a more

balanced degree in concurrency (i.e., interleaving)

across threads can be achieved. Based on our

experimentation, choosing a buffer size that

matches the block size of the underlying file

system typically results in fewer block misses for

data fetched directly from disk.

III. For accelerator service requests, the CaaM

framework assumes that the input dataset is

domiciled locally on an FPGA-attached node.

There is active research to integrate FPGAs with

YARN cluster managers, whereby datasets are

distributed across multiple nodes (both FPGA-

and non-FPGA-attached). With a more aggressive

data locality, such cluster manager could

subsequently schedule FPGA-specific tasks on

the FPGA-attached nodes provided the working

sets of the overall data is already locally cached

to the nodes.

IV. The fact that FPGA acceleration services

implemented using FaaM are encapsulated and

isolated across containers, allows container

mangers, such as Mesos and Kubernetes, to easily

orchestrate such services in a datacenter

environment. Future work will include

conducting further studies on FaaM with a

diverse set of workloads (including machine

learning inference) as well as integrating the

CaaM framework into streaming applications

(e.g., network function virtualization) and data

serialization frameworks like Apache Thrift or

Microsoft Bond.

References
[1] G. McGrath and P. R. Brenner, "Serverless Computing:

Design, Implementation, and Performance," 2017 IEEE 37th

International Conference on Distributed Computing Systems

Workshops (ICDCSW), Atlanta, GA, 2017

[2] B. S. Đorđević, S. P. Jovanović and V. V. Timčenko, "Cloud

Computing in Amazon and Microsoft Azure platforms:

Performance and service comparison," 2014 22nd

Telecommunications Forum Telfor (TELFOR), Belgrade,

2014

[3] https://techcrunch.com/2016/11/30/aws-announces-fpga-

instances-for-its-ec2-cloud-computing-service/

[4] E. Ghasemi and P. Chow, "Accelerating Apache Spark Big

Data Analysis with FPGAs," 2016 Intl IEEE Conferences on

Ubiquitous Intelligence & Computing, Advanced and Trusted

Computing, Scalable Computing and Communications, Cloud

and Big Data Computing, Internet of People, and Smart

World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse,

2016

[5] E. B. Fernandez, W. A. Najjar, S. Lonardi and J. Villarreal,

"Multithreaded FPGA acceleration of DNA sequence

mapping," 2012 IEEE Conference on High Performance

Extreme Computing, Waltham, MA, 2012

[6] S. Vellas, G. Lentaris, K. Maragos, D. Soudris, Z. Kandylakis

and K. Karantzalos, "FPGA acceleration of hyperspectral

image processing for high-speed detection applications," 2017

IEEE International Symposium on Circuits and Systems

(ISCAS), Baltimore, MD, 2017

[7] Intel Xeon+FPGA.

https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?medi

a=carl15-gupta.pdf

[8] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia and P.

Chow, "FPGAs in the Cloud: Booting Virtualized Hardware

Accelerators with OpenStack," 2014 IEEE 22nd Annual

International Symposium on Field-Programmable Custom

Computing Machines, Boston, MA, 2014

[9] K. Ye, D. Huang, X. Jiang, H. Chen and S. Wu, "Virtual

Machine Based Energy-Efficient Data Center Architecture for

Cloud Computing: A Performance Perspective," Green

Computing and Communications (GreenCom), 2010

IEEE/ACM Int'l Conference on & Int'l Conference on Cyber,

Physical and Social Computing (CPSCom), Hangzhou, 2010

[10] S. A. Fahmy, K. Vipin and S. Shreejith, "Virtualized FPGA

Accelerators for Efficient Cloud Computing," 2015 IEEE 7th

International Conference on Cloud Computing Technology

and Science (CloudCom), Vancouver, BC, 2015

[11] A. M. Caulfield et al., "A cloud-scale acceleration

architecture," 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), Taipei, 2016

[12] J. Ouyang, "SDA: Software-defined accelerator for large-

scale deep learning system," 2016 International Symposium

on VLSI Design, Automation and Test (VLSI-DAT),

Hsinchu, Taiwan, 2016

[13] D. Guo, W. Wang, G. Zeng and Z. Wei, "Microservices

Architecture Based Cloudware Deployment Platform for

Service Computing," 2016 IEEE Symposium on Service-

Oriented System Engineering (SOSE), Oxford, 2016

[14] H. Jin, "Virtualization Technology for Computing System:

Opportunities and Challenges," 2008 10th IEEE International

Conference on High Performance Computing and

Communications, Dalian, 2008

[15] Zlib. http://zlib.net/

[16] Apache Spark https://github.com/apache/spark

[17] J. P. Walters et al., "GPU Passthrough Performance: A

Comparison of KVM, Xen, VMWare ESXi, and LXC for

CUDA and OpenCL Applications," 2014 IEEE 7th

International Conference on Cloud Computing, Anchorage,

AK, 2014

[18] D. Liu and L. Zhao, "The research and implementation of

cloud computing platform based on Docker," 2014 11th

International Computer Conference on Wavelet Actiev Media

Technology and Information Processing(ICCWAMTIP),

Chengdu, 2014

[19] D. Jaramillo, D. V. Nguyen and R. Smart, "Leveraging

microservices architecture by using Docker

technology," SoutheastCon 2016, Norfolk, VA, 2016

[20] J. Weerasinghe, F. Abel, C. Hagleitner and A. Herkersdorf,

"Enabling FPGAs in Hyperscale Data Centers," 2015 IEEE

12th Intl Conf on Ubiquitous Intelligence and Computing and

2015 IEEE 12th Intl Conf on Autonomic and Trusted

Computing and 2015 IEEE 15th Intl Conf on Scalable

Computing and Communications and Its Associated

Workshops (UIC-ATC-ScalCom), Beijing, 2015

[21] Chen, Fei, Yi Shan, Yu Zhang, et al. 'Enabling FPGAs in the

Cloud', Proceedings of the 11th ACM Conference on

Computing Frontiers, (2014)

[22] R. Perrey and M. Lycett, "Service-oriented

architecture," 2003 Symposium on Applications and the

Internet Workshops, 2003. Proceedings., 2003

[23] D. G. Puranik, D. C. Feiock and J. H. Hill, "Real-Time

Monitoring using AJAX and WebSockets," 2013 20th IEEE

International Conference and Workshops on Engineering of

Computer Based Systems (ECBS), Scottsdale, AZ, 2013

